On vertex-disjoint cycles and degree sum conditions

نویسندگان

  • Ronald J. Gould
  • Kazuhide Hirohata
  • Ariel Keller
چکیده

This paper considers a degree sum condition sufficient to imply the existence of k vertexdisjoint cycles in a graph G. For an integer t ≥ 1, let σt (G) be the smallest sum of degrees of t independent vertices of G. We prove that if G has order at least 7k+1 and σ4(G) ≥ 8k−3, with k ≥ 2, then G contains k vertex-disjoint cycles. We also show that the degree sum condition on σ4(G) is sharp and conjecture a degree sum condition on σt (G) sufficient to imply G contains k vertex-disjoint cycles for k ≥ 2. © 2017 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree sum conditions and vertex-disjoint cycles in a graph

We consider degree sum conditions and the existence of vertex-disjoint cycles in a graph. In this paper, we prove the following: Suppose that G is a graph of order at least 3k + 2 and σ3(G) ≥ 6k − 2, where k ≥ 2. Then G contains k vertex-disjoint cycles. The degree and order conditions are sharp.

متن کامل

Degree-Sum Conditions for Graphs to Have 2-Factors with Cycles Through Specified Vertices

Let k ≥ 2 and n ≥ 1 be integers, let G be a graph of order n with minimum degree at least k + 1. Let v1, v2, · · · , vk be k distinct vertices of G, and suppose that there exist k vertex disjoint cycles C1, · · · , Ck in G such that vi ∈ V (Ci) for each 1 ≤ i ≤ k. Suppose further that the minimum value of the sum of the degrees of two nonadjacent distinct vertices is greater than or equal to n ...

متن کامل

Vertex-Disjoint Cycles Containing Specified Vertices in a Graph

Let k ≥ 2 and n ≥ 1 be integers, and let G be a graph of order n with minimum degree at least k + 1 . Let v1, v2, . . . vk be k distinct vertices of G , and suppose that there exist vertex-disjoint cycles C1, C2, . . . , Ck in G such that ∑k i=1 |V (C i)| ≥ 399 100 k and vi ∈ V (Ci) for each 1 ≤ i ≤ k . Suppose further that the minimum value of the sum of the degrees of two nonadjacent distinct...

متن کامل

Chorded Cycles

A chord is an edge between two vertices of a cycle that is not an edge on the cycle. If a cycle has at least one chord, then the cycle is called a chorded cycle, and if a cycle has at least two chords, then the cycle is called a doubly chorded cycle. The minimum degree and the minimum degree-sum conditions are given for a graph to contain vertex-disjoint chorded (doubly chorded) cycles containi...

متن کامل

Disjoint Chorded Cycles of the Same Length

Corrádi and Hajnal [1] showed that any graph of order at least 3k with minimum degree at least 2k contains k vertex-disjoint cycles. This minimum degree condition is sharp, because the complete bipartite graph K2k−1,n−2k+1 does not contain k vertex-disjoint cycles. About the existence of vertex-disjoint cycles of the same length, Thomassen [4] conjectured that the same minimum degree condition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 341  شماره 

صفحات  -

تاریخ انتشار 2018